ACM 贪心算法
贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解。
例题
钱币找零问题
假设1元、2元、5元、10元、20元、50元、100元的纸币分别有c0, c1, c2, c3, c4, c5, c6张。现在要用这些钱来支付K元,至少要用多少张纸币?
代码
1 |
|
可分割背包问题
有一个背包,背包容量是M,有N个物品,要求尽可能让装入背包中的物品总价值最大,但不能超过总容量,物品可以只取一部分。
输入
第一行输入一个正整数n(1<=n<=5),表示有n组测试数据;
随后有n测试数据,每组测试数据的第一行有两个正整数s,m(1<=s<=10);s表示有s个物品。接下来的s行每行有两个正整数v,w,分别表示物品的单位价值和总质量。
输出
输出每组测试数据中背包内的物品的价值和,每次输出占一行。
样例输入
1 | 1 |
样例输出
1 | 65 |
代码
1 |
|
排序
冒泡排序
1 | for (int i = 0; i < len - 1; i++) |
选择排序
1 | for(i = 0; i < n-1; i++) |
其他排序
已经帮你们百度好的链接
建议用C++的 algorithm 头文件中的 sort 函数,也是ACM中最常用的排序算法。
缺点
贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。
⑴贪心策略:总价值最大
反例:
W=30
物品:A B C
重量:28 12 12
价值:30 20 20
根据策略,首先选取物品A,接下来就无法再选取了,可是,选取B、C则更好。
⑵贪心策略:重量最小
它的反例与第一种策略的反例差不多。
⑶贪心策略:单位量价值最大
反例:
W=30
物品:A B C
重量:28 20 10
价值:28 20 10
根据策略,三种物品单位重量价值一样,程序无法依据现有策略作出判断,如果选择A,则答案错误。
【注意:如果物品可以分割为任意大小,那么策略3可得最优解】
(4)DP问题(动态规划)
W=40
物品:A B C
重量:25 20 15
价值:25 20 15
这需要DP。
题目
今年暑假不AC(节目表)
“今年暑假不AC?”
“是的。”
“那你干什么呢?”
“看世界杯呀,笨蛋!”
“@#$%^&*%…”
确实如此,世界杯来了,球迷的节日也来了,估计很多ACMer也会抛开电脑,奔向电视了。
作为球迷,一定想看尽量多的完整的比赛,当然,作为新时代的好青年,你一定还会看一些其它的节目,比如新闻联播(永远不要忘记关心国家大事)、非常6+7、超级女生,以及王小丫的《开心辞典》等等,假设你已经知道了所有你喜欢看的电视节目的转播时间表,你会合理安排吗?(目标是能看尽量多的完整节目)
Input
输入数据包含多个测试实例,每个测试实例的第一行只有一个整数n(n<=100),表示你喜欢看的节目的总数,然后是n行数据,每行包括两个数据Ti_s,Ti_e (1<=i<=n),分别表示第i个节目的开始和结束时间,为了简化问题,每个时间都用一个正整数表示。n=0表示输入结束,不做处理。
Output
对于每个测试实例,输出能完整看到的电视节目的个数,每个测试实例的输出占一行。
Sample Input
1 | 12 |
Sample Output
1 | 5 |
代码(HDU 2037)
1 |
|
阶乘之和
描述
给你一个非负数整数n,判断n是不是一些数(这些数不允许重复使用,且为正数)的阶乘之和,如9=1!+2!+3!,如果是,则输出Yes,否则输出No;
输入
第一行有一个整数0<m<100,表示有m组测试数据;
每组测试数据有一个正整数n<1000000;
输出
如果符合条件,输出Yes,否则输出No;
样例输入
1 | 29 |
样例输出
1 | Yes |
喷水装置(一)
描述
现有一块草坪,长为20米,宽为2米,要在横中心线上放置半径为Ri的喷水装置,每个喷水装置的效果都会让以它为中心的半径为实数Ri(0<Ri<15)的圆被湿润,这有充足的喷水装置i(1<i<600)个,并且一定能把草坪全部湿润,你要做的是:选择尽量少的喷水装置,把整个草坪的全部湿润。
输入
第一行m表示有m组测试数据
每一组测试数据的第一行有一个整数数n,n表示共有n个喷水装置,随后的一行,有n个实数ri,ri表示该喷水装置能覆盖的圆的半径。
输出
输出所用装置的个数
样例输入
1 | 2 |
样例输出
1 | 2 |
> 喷水装置(二)
改成二维,输入装置个数n、草坪宽 w、高 h(实数),以及每个喷水装置的横坐标和半径。其余题意同上一题。
过河问题
描述
在漆黑的夜里,N位旅行者来到了一座狭窄而且没有护栏的桥边。如果不借助手电筒的话,大家是无论如何也不敢过桥去的。不幸的是,N个人一共只带了一只手电筒,而桥窄得只够让两个人同时过。如果各自单独过桥的话,N人所需要的时间已知;而如果两人同时过桥,所需要的时间就是走得比较慢的那个人单独行动时所需的时间。问题是,如何设计一个方案,让这N人尽快过桥。
输入
第一行是一个整数T(1<=T<=20)表示测试数据的组数
每组测试数据的第一行是一个整数N(1<=N<=1000)表示共有N个人要过河
每组测试数据的第二行是N个整数Si,表示此人过河所需要花时间。(0<Si<=100)
输出
输出所有人都过河需要用的最少时间
样例输入
1 | 1 |
样例输出
1 | 17 |